Conformational Analysis of 2-OAryl-2-oxo-4,6-dimethyl- and -4-methyl-1,3,2*k*⁵ dioxaphosphorinanes. Spectroscopic, X-Ray, and Solid-State 13C and 31P Studies

Ernest L. Eliel,* Barbara Gordillo,† Peter S. White, and David L. Harris

Contribution from the William Rand Kenan Laboratories, Department of Chemistry, CB #3290, University of North Carolina, Chapel Hill, North Carolina 27599-3290

Received 18 February 1997; revised 14 April 1997

ABSTRACT

*Results of IR and 1H, 13C, and 31P NMR studies of the anancomeric title compounds (***2–5***) and compound* **1** *(Scheme 1) are analyzed to search for the existence of high-energy boat or twist-boat conformations in the equatorial epimers. While the difference in frequencies* $(Dv)_{P=0}$ *between the axial and equatorial compounds and* ¹³C NMR J_{POCC} and anti J_{POCCH3} values suggest the *participation of twist-boat conformations for the equatorial isomers, coupling constants in 1H NMR* J_{H4H5a} *or* J_{H6H5a} and J_{H4H5e} *or* J_{H6H5e} *of the equatorial isomers* 2e–4e *along with the lack of a large* ${}^{3}J_{\text{PH}}$ *in* ${}^{31}P$ *NMR are consistent with predominant chair conformations. In addition, an X-ray structure of the equatorial 2-p-nitrophenoxy-2-oxo-cis-4,6-dimethyl-1,3,2 dioxaphosphorinane (***4e***) showed that the molecule adopts a chair conformation with no severe ring flattening in the OPO region in the solid state. X-ray structures of trans-***4** *and trans-***5** *displayed chair conformations with mild ring flattening especially in the axial methyl region, presumably as a result of the steric*

methyl-oxygen interaction. CPMAS 13C and 31P NMR spectra of **4a** *and* **4e** *provide evidence against the presence of a significant contribution of a twist-boat conformation in solid equatorial* **4e***. The NMR spectral analysis of* **1e,** *on the other hand, suggests a substantial contribution of a twist conformation as well as, possibly, some contribution of the inverted chair.* $© 1997$ John Wiley & Sons, Inc. Heteroatom Chem **8:**509–516, 1997

INTRODUCTION

In connection with our studies of the basic hydrolysis of cyclic phosphates [1] where a lack of stereochemical control was observed, we have analyzed the conformation of the title compounds (**1–5**) (Scheme 1) to obtain insight into the possible presence of high-energy conformers [2] that might complicate stereochemical interpretations.

The ring conformations of analogous OAr phosphates have been postulated to be chairs for the axial isomers **A** but twist **B** or boat **C** conformations [3] for the equatorial ones. This has been ascribed to the preference of the OAr group to occupy the axial position as a consequence of the anomeric effect [4] (Scheme 2).

In some compounds of biological interest

Dedicated to Prof. William E. McEwen on the occasion of his seventy-fifth birthday.

^{*}To whom correspondence should be addressed.

[†] Present address: Depto. de Quı´mica, CINVESTAVIPN, Apdo. postal 14-740, México 14, D. F.

^{© 1997} John Wiley & Sons, Inc. CCC 1042-7163/97/060509-08

 $2e$

 $3e$

4 e

4а 5a

 $X = Y = NO₂$

SCHEME 1

 $X = NO₂, Y = H$ trans-4

 $X = Y = H$

 $X = Y = NO₂$

trans-2

trans-5

(Scheme 3), the phosphate ring adopts twist rather than chair conformations [5] even for phosphates substituted with moderately electronegative groups such as OPh [6]. This situation may, in part, be due to the inherent difficulty of *trans*-fusing a five-membered ring (normal torsion angle $\langle 40^\circ \rangle$ diequatorially to a six-membered chair (normal torsion angle \sim 65 $^{\circ}$).

EXPERIMENTAL SECTION

Spectral Analyses. 1H, 13C, and 31P NMR spectra were recorded at 250 MHz, 62.9 MHz, and 101.26 MHz, respectively. ³¹P shifts are reported in δ ppm upfield (-) from external 85% H₃PO₄. Solid-state ¹³C spectra were recorded in a Bruker MSL 360 widebore spectrometer operating at 90.53 MHz. Spectra were recorded with spinning of the sample at the magic angle and 1H–13C cross-polarization. Solidstate 31P spectra were recorded on a Bruker A-200

SCHEME 3

spectrometer using a Doty MAS probe operating at 80.96 MHz. Referencing of the 31P shifts was achieved by using an external standard sample of $NaH_2PO_4 (\delta = 0).$

*2-Aryloxy-2-oxo-4,6-dimethyl-1,3,2k5-dioxaphosphorinanes (***1–5***).* These compounds were obtained following literature procedures [1b] except in the case of **5.**

*2,4-Dinitrophenoxy-2-oxo-4,6-dimethyl-1,3,2k5 dioxaphosphorinane (***5***).* Dry THF (10 mL) was placed in a N_2 -flushed 25 mL round-bottomed flask that contained 2,4-dinitrophenol (1.01 g, 5.5 mmol), and the flask was cooled to 0°C. A solution of *n*-BuLi (4.0 mL, 5.5 mmol) 1.39 M in hexanes was added dropwise via syringe. The yellow solution turned

deep red upon *n*-BuLi addition. The mixture was stirred for 1 hour. The red oxyanion solution was transferred via cannula dropwise into another N_2 -flushed round-bottomed flask that contained 2-chloro-2-oxo-2,4-dimethyl-1,3,2*k*5-dioxaphosphorinane [1b] (1.0 g, 5.4 mmol; mixture of stereoisomers) and 15 mL of dry THF. After the addition was completed, the resulting red solution was stirred at $0-3$ °C for an additional 3 hours. Then 100 mL of ammonium chloride and 100 mL of ether were added to the reaction mixture that was transferred to a separatory funnel. The combined organic layers were washed with 100 mL of brine and 200 mL of sodium carbonate solution and dried over Mg_2SO_4 . After filtration, the solvent was removed under reduced pressure to yield a black oil that, after treatment with norit-A, gave 0.58 g (32%) of a yellow oil. Flash column chromatography (elution with 50/50 *n*-hexanes/ethyl acetate) resulted in 0.14 g (7.8%) of a pale yellow solid, axial **5a** [7], and 0.2 g (11.1%) of another yellow pale solid, *trans*-**5,** which, after recrystallization from petroleum ether, gave crystals mp 99.5–100.5°C. *trans*-5¹H NMR (CDCl₃): δ 1.51 $(dd, J_{\text{HCCH}} = 6.3 \text{ Hz}, J_{\text{HCCOP}} = 2.5 \text{ Hz}, 3\text{H}, \text{CH}_3 \text{ eq}.$ at C_4 or C_6), 1.56 (d, $J_{\text{HCCH}} = 7.58$ Hz, 3H, CH₃ ax. at C_4 or C₆), 1.99 (dm, $J_{\text{gem}} = 14.1 \text{ Hz}$, 1H, H₅ eq.), 2.19 $(m, 1H, H₅ ax.), 5.02 (m, 2H, H_{4,6}), 8.05 (dd, J = 9.2)$ Hz , $J = 0.7 \text{ Hz}$, 1H, H_{arom}), 8.44 (dd, $J = 9.3 \text{ Hz}$, *J* $= 2.8$ Hz, 1H, H_{arom}), 8.79 (dd, $J = 2.8$ Hz, $J = 1.2$ $\rm Hz, 1H, H_{\rm arom.}$).

RESULTS AND DISCUSSION

IR Spectroscopy. Infrared analysis is based on the widely accepted observation that the stretching frequency ($P=O$) of an axial phosphoryl bond is 20– 30 cm⁻¹ lower than the equatorial (P=O) stretching frequency [8]. Infrared frequencies for the epimeric phosphates (**1–5**) are summarized in Table 1.

TABLE 1 Stretching Frequencies $(P=O)$ for Phosphates (**1–5**)

$Cmpd^a$	OAr-axial (a)	OAr-equatorial (e)	Δv (cm ⁻¹)
1	1302	1296	6
2	1296	1290, 1278 ^b	$6 - 18$
trans-2	1290		
3	1308, 1290 ^b	1278	$12 - 30$
4	1308	1284	24
trans-4	1308, 1284 ^b		
5	1308		
trans-5	1308		

^aValues in either KBr or neat depending on whether the compound is solid or liquid. Values for 4a and 4e in CDCl₃.

FTwo peaks observed in this region.

The stretching frequencies for the esters **3a–5a,** as well as *trans*-4 and *trans*-5 (1308 cm⁻¹, see Table 1) are of the order expected. These signals are moderately sharp, except for **3a** and *trans*-**4** [9], which points to a single chair conformation with axial OAr that is also favored by the anomeric effect [4]. In contrast, the equatorial isomers **1e–4e** present broader peaks possibly due to the presence of two or more phosphate ring conformations [10,11]; however, as in previous work [9,10], the results are not clear-cut and therefore not conclusive.

NMR Analyses. Analysis of 13C NMR spectra data of phosphates (**1–5**) are summarized in Table 2.

Coupling constants, ${}^{3}J_{\text{POC}}$ for C₅ and anti ${}^{3}J_{\text{pocCH}_3}$ (methyl groups in C₄, C₆) for the equatorial isomers (**1e–4e**), are in the range of conformationally heterogeneous systems [12,13]: The $\frac{3J_{PCS}}{2} = 6.2-$ 7.8 Hz values are too large to represent the $\frac{3}{2}$ _{PC} expected for a pure chair conformation with a 60° torsion angle $\chi_{\text{C}_5-\text{C}_4-\text{O-P}}$ ($J = 3.7-5.6$ Hz for 1a–5a). Also, ${}^{3}J_{P-CH_3}$ (C_{4,6a}) = 5.7–8.3 Hz is small compared to the expected ³*J*_{PC} at torsion angle $\chi_{\text{CH}_3\text{-}C_4\text{-}O\text{-}P}$ or $\chi_{\text{CH}_3\text{-}C_6\text{-}O\text{-}P}$ of 180° $(J = 8.5-10 \text{ Hz} [13]$; observed 9.5-9.9 Hz for **1a–5a**). All this evidence points to contributions of twist-boat conformations to **1e–4e.** The slightly more upfield resonance of Me4 (21.53 ppm) in **1e** compared to **1a–5a** (21.85–22.05 ppm) may indicate a contribution of the inverted chair conformer to **1e.**

By contrast, coupling constants in 1H NMR, $J_{\rm H_{4a}H_{5a}}$ or $J_{\rm H_{6a}H_{5a}}$ (11.4–11.6 Hz) and $J_{\rm H_{4a}H_{5c}}$ or $J_{\rm H_{6a}H_{5c}}$ (2.5–2.7 Hz) for the equatorial isomers (Table 3) are consistent with a chair or boat phosphate ring conformation according to the Karplus relationship) [14]. Moreover, the lack of large $\frac{3J_{\text{poch}}}{}$ coupling constants (chair: synclinal $P-H_{4,6}$ relationship, boat: antiperiplanar P–H_{4,6} relationship) in 31 P–H undecoupled NMR spectra for the equatorial **2e–4e** speaks against a substantial population of boat or twist-boat conformers. The situation is different for **1e** whose ${}^{3}J_{\text{PH}}$ coupling constant (Table 3) is much smaller than that for **1a** and falls in the range [8a] expected for a twist-boat conformation. The intermediate ${}^{3}J_{\text{PH}}$ in the *trans* isomers suggests some contribution of twist conformations to these compounds also [8a]. In addition, long-range coupling constants $\mathcal{Y}_{p_{\text{OCCH3}}} =$ 2.3–2.8 for the methyl group in C_4 and/or C_6 for both the axial and equatorial **1–5** are also within the values observed for chair conformations, with the methyl group being equatorial. 31P signals are shifted upfield for axial **1a–4a** and shifted downfield for equatorial **1e–4e** as expected [3a].

The solvent dependence of the 31P chemical shift difference between epimers was tested in the most "axial-seeking" compound studied, the *p*-nitrophenyl derivative. No significant change in $\Delta\delta$ ³¹P chemical

(8.6)

— —

— 121.34^d

TABLE 2 Room-Temperature ¹³C NMR Signal Assignments in Phosphates (1–5)^{a,b}

(7.6) ^aShift in ppm from TMS in CDCL₃, J_{PC} in Hz in parentheses.
^bAromatic signals were assigned according to Ref. [29].

37.12

These assignments could be interchanged; however, the axial methyl should have the smaller ${}^3J_{\rm CP}$.

(7.7)

These assignments could be interchanged.

(7.7)

TABLE 3 ¹H NMR Backbone Coupling Constants (in Hz)^a and ³¹P Shifts (in ppm) and Selected Coupling Constants,

TABLE 4 $\Delta\delta$ ³¹P NMR Chemical Shift for cis-2-Nitrophenyl-2-oxo-4,6-dimethyl-1,3,2*k*5-dioxaphosphorinanes (**4a**–**4e**)

 123.20^d

55.59

55.62

^aFirst-order analysis.

 ${}^{3}J_{\text{POCHe}}$ (in Hz) in CDCl₃

^bUndetermined.

^cThe signal was almost a quintet; this finding and the fact that this value is much smaller than expected suggest a twist conformation for **1e** [15,16].

 ${}^aJ_{\rm CP}$ in Hz in parentheses.

Torsion Angles (deg)	Bond Lengths (A)	Bond Angles (deg)
81.1(2) $7 - 2 - 3 - 4 =$ $7 - 2 - 1 - 6 =$ $-78.1(2)$ 172.9(3) $4\alpha - 4 - 3 - 2 =$ $-47.6(2)$ 1-2-3-4 $=$ 51.9(2) $3 - 2 - 1 - 6 =$ $-155.2(2)$ $8-2-3-4 =$ 155.7(2) $8 - 2 - 1 - 6 =$ $6\alpha - 6 - 1 - 2 =$ 177.7(3) 50.3(2) 5-4-3-2 $=$ $-59.3(2)$ 5-6-1-2 $=$	$1-2 = 1.567(3)$ $1-6 = 1.482(4)$ $2-3 = 1.566(3)$ $2 - 7 = 1.451(3)$ $2-8 = 1.573(3)$ $3-4 = 1.476(4)$ $4-5 = 1.527(6)$ $4-4\alpha = 1.512(6)$ $5-6 = 1.524(5)$ $6-6\alpha = 1.500(5)$ $8-1' = 1.401(4)$ $1'-2' = 1.392(4)$ $1'-6' = 1.380(4)$ $2' - 3' = 1.377(5)$ $3' - 4' = 1.373(5)$ $4'-5' = 1.377(5)$	$1-2-3 = 105.4(2)$ $1-6-5 = 107.8(3)$ $1-2-8 = 104.2(2)$ $1 - 6 - 6\alpha = 106.6(3)$ $2 - 3 - 4 = 118.9(2)$ $3-2-8 = 99.6(2)$ $3-4-5 = 109.4(3)$ $3-4-4\alpha = 105.3(3)$ $4-5-6 = 113.4(3)$ $5 - 4 - 4\alpha = 113.8(4)$ $5-6-6\alpha = 114.2(3)$ $7 - 2 - 1 = 114.7(2)$ $7 - 2 - 3 = 116.9(2)$ $7 - 2 - 8 = 114.7(2)$ $8-1' - 2' = 120.9(3)$ $8 - 1' - 6' = 117.4(3)$
	$5' - 6' = 1.388(6)$ $4'-N = 1.478(5)$	

TABLE 6 Selected Torsion Angles (ω) (deg), Bond Lengths (A) , and Bond Angles (deg) in Equatorial 2-p-Nitrophenoxy-2-oxo-cis-4,6-dimethyl-1,3,2*k*5-dioxaphosphorinane **4e**

TABLE 7 Selected Torsion Angles (*x*) (deg), Bond Lengths (\AA) , and Bond Angles (deg) in Axial 2-p-Nitrophenoxy-2-oxocis-4,6-dimethyl-1,3,2*k*5-dioxaphosphorinane **4a**

FIGURE 1 ORTEP representation of compound **4e.**

FIGURE 2 ORTEP representation of compound **4a.**

TABLE 8 Selected Torsion Angles (*x*) (deg), Bond Lengths (\hat{A}) , and Bond Angles (deg) in axial 2-p-Nitrophenoxy-2-oxotrans-4,6-dimethyl-1,3,2*k*5-dioxaphosphorinane trans-**4**

165.5(2) $1-2 = 1.550(2)$ $1 - 2 - 3 = 107.9(1)$ 7-2-3-4 $\qquad \qquad =$ 156.2(2) $1-6 = 1.474(4)$ $1-6-5 = 109.8(3)$ 7-2-1-6 $=$ 177.0(3) $4\alpha - 4 - 3 - 2 =$ $2-3 = 1.554(3)$ $1-2-8 = 101.0(1)$	Torsion Angles (deg)	Bond Lengths (À)	Bond Angles (deg)	
3-2-1-6 29.9(1) $2-8 = 1.599(2)$ $2 - 3 - 4 = 119.1(2)$ $=$ 69.2(1) $3-4 = 1.480(3)$ $3-2-8 = 105.0(2)$ $8 - 2 - 3 - 4 =$ $-80.1(1)$ $8 - 2 - 1 - 6 =$ $4-5 = 1.502(5)$ $3-4-5 = 107.8(3)$ $6\alpha - 6 - 1 - 2 =$ 89.7(2) $4-4\alpha = 1.501(5)$ $3-4-4\alpha = 106.8(3)$ 5-4-3-2 54.5(2) $5-6 = 1.518(5)$ $4-5-6 = 113.9(3)$ $=$ 5-6-1-2 $-38.0(1)$ $6-6\alpha = 1.500(4)$ $5-4-4\alpha = 113.7(3)$ $=$ $8-1' = 1.395(3)$ $5-6-6\alpha = 115.6(3)$ $1'-2' = 1.380(4)$ $7 - 2 - 1 = 114.8(2)$ $1'-6' = 1.374(4)$ $7 - 2 - 3 = 112.5(2)$ $2' - 3' = 1.385(4)$ $7 - 2 - 8 = 114.6(1)$ $3' - 4' = 1.375(3)$ $8-1'-2' = 122.8(2)$ $4' - N = 1.463(3)$ $8 - 1' - 6' = 115.5(2)$ $4' - 5' = 1.386(4)$ $5' - 6' = 1.382(4)$	$-37.9(1)$ 1-2-3-4 $=$	$2-7 = 1.445(2)$	1-6-6 α = 109.5(3)	

shift difference for **4a–4e,** upon change of solvent from chloroform to acetone, was found, but a ca. 1.0 ppm difference was found upon switching to the more polar methanol, which may mean a change in conformational population for **4e** in this solvent [17] (Table 4).

CPMAS 13C and 31P NMR spectra were recorded for the *p*-nitro epimers **4a** and **4e** to study the con-

TABLE 9 Selected Torsion Angles (ω) (deg), Bond Lengths (A) , and Bond Angles (deg) in 2,4-Dinitrophenoxy-2-oxotrans-4,6-dimethyl-1,3,2*k*5-dioxaphospharinane trans-**5**

Torsion Angles (deg)	Bond Lengths (A)	Bond Angles (deg)
165.0(4) $7 - 2 - 3 - 4 =$ $-150.5(5)$ 7-2-1-6 $=$ $-176.6(11)$ $4\alpha - 4 - 3 - 2 =$ 35.3(3) $1 - 2 - 3 - 4$ $=$ $-23.1(3)$ $3 - 2 - 1 - 6 =$ $-73.1(3)$ 8-2-3-4 $=$ 88.1(4) $8 - 2 - 1 - 6$ $=$ $6\alpha - 6 - 1 - 2 =$ $-95.3(6)$ $-54.9(4)$ 5-4-3-2 $=$	$1-2 = 1.541(5)$ $1-6 = 1.480(9)$ $2-3 = 1.541(4)$ $2 - 7 = 1.435(5)$ $2-8 = 1.600(4)$ $3-4 = 1.454(8)$ $4-5 = 1.487(12)$ $4-4\alpha = 1.468(11)$ $5-6 = 1.481(14)$	$1-2-3 = 108.4(3)$ $1-6-5 = 110.7(1)$ $1-2-8 = 101.7(3)$ 1-6-6 $\alpha = 107.6(7)$ $2 - 3 - 4 = 120.6(4)$ $3-2-8 = 105.7(3)$ $3-4-5 = 105.9(6)$ $3-4-4\alpha = 108.4(6)$ $4-5-6 = 114.5(6)$
32.9(4) $5 - 6 - 1 - 2 =$	$6-6\alpha = 1.478(15)$ $8-1' = 1.385(7)$ $1' - 2' = 1.394(8)$ $1'-6' = 1.350(10)$ $2' - 3' = 1.362(9)$ $3' - 4' = 1.363(12)$ $4' - 5' = 1.379(11)$ $5'-6' = 1.394(9)$ $4' - N = 1.475(9)$	$5 - 4 - 4\alpha = 113.1(7)$ $5-6-6\alpha = 116.4(8)$ $7 - 2 - 1 = 116.2(3)$ $7 - 2 - 3 = 112.2(3)$ $7 - 2 - 8 = 111.6(3)$ $8-1' - 2' = 120.9(6)$ $8-1'-6' = 118.9(5)$

FIGURE 3 ORTEP representation of compound trans-**4.**

formational equilibrium chair \rightleftarrows twist-boat under static conditions [18,19]. The results are summarized in Table 5.

Although the differences in chemical shifts $\Delta \delta^{20}$ between solution and solid spectra for the equatorial **4e** isomer are larger than for the axial **4a,** especially for $C_{4,6}$ (3.49 vs. -0.03 ppm) and for the ³¹P signals $(-3.1 \text{ vs. } 1.1 \text{ ppm})$, the potential participation of a twist-boat conformation in the equatorial epimer **4e** could not be established due to the absence $(\leq 5\%)$ of a second set of signals. This result speaks against a contribution of the twist-boat conformation in the equatorial *p*-nitrophenyl phosphate **4e** in the solid

FIGURE 4 ORTEP representation of compound trans-**5.**

state; however, the increased $(\Delta \delta)$ for **4e** may be due to the appearance of a contributing nonchair conformation in solution affecting the (averaged) spectrum.

X-RAY ANALYSES [22–25]

In order to establish irrefutable structural evidence for select compounds, at least in the solid state, an X-ray structure determination for the equatorial 2 *p*-nitrophenoxy-2-oxo-*cis*-4,6-dimethyl-1,3,2*k*5-dioxaphosphorinane (**4e**) was carried out. Selected torsion angles, bond distances, and bond angles are shown in Table 6; an ORTEP drawing of the molecule is shown in Figure 1. The molecule adopts a chair conformation with no severe ring flattening in the OPO region (torsion angles $\omega_{O_1PO_3C_4} = -47.6^\circ$ and $\omega_{\text{o}_3\text{PO}_1\text{C}_6}$ = 51.9°) as compared to the axial isomer **4a** $(\omega_{O_1PO_3C_4} = 43.4^{\circ}; \omega_{O_3PO_1C_6} = -42.4^{\circ}).$ The slightly greater pucker in **4e** can also be judged from the decrease of the bond angles C_4 - O_3 - P and C_6 - O_1 - P from 119.3° (mean) for 4a to 117.4° (mean) in 4e [26]. The X-ray structure of **4a** is presented in Figure 2, and selected data are presented in Table 7. The unequal P–OAr exocyclic and P–O endocyclic bond lengths for **4a** are 1.61 and 1.55 A (mean), respectively,

which, in comparison with the corresponding identical bond lengths in **4e,** 1.57 and 1.57 A˚ (mean), presumably supports the presence of the anomeric effect $(n_{\Pi}O \rightarrow \sigma^*$ (P–OAr) [4a] in the axial isomer **4a.** X-ray analyses were also performed for the *trans*-**4** and *trans*-**5** compounds. In these phosphate esters, the steric interaction methyl(4)- or methyl(6)-axial-OAr may introduce an additional factor promoting distortion of the phosphate ring. However, as in the other cases, these phosphates present chair conformations with increased ring flattening on the methyl-axial side of the ring ($\omega_{O_3PO_1C_6} = -29.9$ vs. $\omega_{\text{O}_1 \text{PO}_3 \text{C}_4}$ = 37.9 for *trans*-4 and $\omega_{\text{O}_3 \text{PO}_1 \text{C}_6}$ = -23.1 vs. $\omega_{\text{O}_1 \text{PO}_3 \text{C}_4}$ = 35.3 for *trans*-5). Selected torsion angles, bond lengths, bond angles for *trans*-**4** and *trans*-**5** are shown in Tables 8 and 9, respectively, with ORTEP drawings in Figure 3 and 4. The sum of PO distances in **4a, 4e,** *trans*-**4,** and *trans*-**5** are 6.16, 6.16, 6.15, and 6.12 Å, respectively, in accord with Cruickshank's predictions [25,26].

CONCLUSION

The X-ray analysis of **4e** shows that the conformation in the crystal is a chair with an equatorial $OC_6H_4-p-NO_2$ group; compounds 4a, *trans*-4, and *trans*-**5** are also in chair conformations with axial OAr substituents in the solid state. Ring flattening in the OPO region, notably observed in *trans*-**4** and *trans*-5, is no doubt a consequence of the $Me₄$ -OAr syn-axial interaction in the *trans* isomers.

The participation of boat or twist-boat conformations in equatorial *cis* compounds **2e–4e** is hinted at by 1H, 31P, and 13C NMR data and seems to be more pronounced in the singly conformationally anchored **1e.** There may be a small contribution of the inverted chair in **1e** also. However, twist-boat conformations in **2e–4e** are not as highly populated as in decalin phosphates [8a] or in pentose phosphates with biological activity [6,27]. The influence of a second ring attached to a cyclic phosphate seems to be essential for stabilization of twist-boat conformations. The anomeric effect [4] in **4e** and steric interactions in *trans*-**4** and *trans*-**5** are, in any case, insufficient to force these molecules into a twist-boat conformation in the solid state.

ACKNOWLEDGMENTS

This work was supported by NSF Grant CHE-8703060. We are grateful to Prof. S. A. Evans for important comments on the synthesis of *trans*-**5** and Prof. W. G. Bentrude for helpful suggestions.

Supplementary Material Available. A complete

description of the X-ray crystallographic structure determinations have been deposited with the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

REFERENCES

- [1] B. Gordillo, E. L. Eliel, *J. Am. Chem. Soc., 113,* 1991, 2172.
- [2] (a) The free-energy difference between chair and boat conformations of *cis*-2,5-di-*tert*-butyl-1,3,2 dioxaphosphorinane-2-one ring was reported to be 1 kcal/mol or less: cf. G. W. Bentrude, K. C. Yee, *J. Chem. Soc. Chem. Commun.,* 1972, 169 and references cited therein. This is in contrast with the difference between boat or twist and chair conformations in 1,3-dioxanes or cyclohexanes that are of the order of 5–6 kcal/mol. (b) Some other heterocycles containing phosphorus-V also prefer twist-boat conformations. U. Engelhardt, A. Simon, *Z. Anor. Allg. Chem., 619,* 1993, 1177.
- [3] Reviews of the sterochemical aspects of phosphates can be found in (a) B. E. Maryanoff, R. O. Hutchins, C. A. Maryanoff: in E. L. Eliel, N. L. Allinger (eds): *Topics Stereochemistry,* vol. 11, p. 187 (1979). (b) M. J. Gallagher: in J. G. Verkade, L. D. Quin (eds): *Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis: Organic Compounds and Metal Complexes,* VCH Publishers, Inc. Deerfield Beach, FL, (1987) 297. (c) D. G. Gorenstein, R. Rowell, K. Taira: in L. D. Quin, J. G. Verkade (eds): *Phosphorus Chemistry, ACS Symposium Series No. 171,* American Chemical Society, Washington D.C. (1981) 69.
- [4] (a) P. Van Nuffel, C. Van Alsenoy, A. T. H. Lenstra, H. J. Geise, *J. Mol. Struct. 125,* 1984, 1; (b) D. G. Gorenstein, R. Rowell, *J. Am. Chem. Soc., 101,* 1979, 4925; (c) D. G. Gorenstein, *Chem. Rev., 87,* 1987, 1049.
- [5] (a) J. H. Yu, A. E. Sopchik, A. M. Arif, W. G. Bentrude, *J. Org. Chem., 55,* 1990, 3444 and references cited therein; (b) A. E. Sopchik, G. S. Bajwa, K. A. Nelson, W. G. Bentrude: in L. D. Quin, J. G. Verkade (eds): *Phosphorus Chemistry, ACS Symposium Series No. 171,* American Chemical Society, Washington D.C. (1981) 217.
- [6] K. A. Nelson, W. G. Bentrude, W. N. Setzer, J. P. Hutchinson, *J. Am. Chem. Soc., 109,* 1987, 4058.
- [7] Properties and analyses of compound **5a** are as described in Ref. [1b].
- [8] (a) D. G. Gorenstein, R. Rowell, J. Findlay, *J. Am. Chem. Soc., 102,* 1980, 5077 and references cited therein; (b) J.-P. Majoral, J. Navech, *Bull. Soc. Chim. Fr.,* 1971, 1331.
- [9] The stereochemical analysis of 1,3,2-dioxaphosphorinanes by IR is sometimes complicated by the presence of multiple bands or broad bands in the region $1200-1350$ cm⁻¹. This has been attributed to the presence of rotational isomers; cf. J. A. Mosbo, J. G. Verkade, *J. Org. Chem., 42,* 1977, 1549.
- [10] Since IR transitions are faster than ring inversions, IR bands for individual ring conformers should be

seen; cf. D. W. White, G. K. McEwen, R. D. Bertrand, J. G. Verkade, *J. Chem. Soc. (B),* 1971, 1454.

- [11] A 40–100% contribution of twist-boat conformations has been postulated in analogous annelated equatorial phosphate esters. See Ref. [8a] and J. A. Mosbo, *Org. Magn. Res., 11,* 1978, 281.
- [12] In 2-methoxy-1,3,2-dioxaphosphorinane, it was found that the equatorial isomer (chair conformer) has a J_{POCC_5} of 13.5 Hz while the axial isomer (chair conformer) a J_{pocc_5} of 4.2 Hz. The large coupling constant for the equatorial isomer has been accounted for by the closer neighborhood of the lone pair on phosphorus with C_5 ; cf. M. Haemers, R. Ottinger, D. Zimmermann, J. Reisse, *Tetrahedron, 29,* 1973, 3539. See also Ref. [13a].
- [13] (a) L. D. Quin: in J. G. Verkade, L. D. Quin, (eds): *Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis: Organic Compounds and Metal Complexes,* VCH Publishers, Inc., Deerfield Beach, FL(1987) 391. (b) See also Refs. [3a] and [8a].
- [14] (a) The values of ${}^{3}J_{\text{HaHa}}$ are somewhat small: W. G. Bentrude, W. N. Setzer: in J. G. Verkade, L. Quin, (eds): *Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis: Organic Compounds and Metal Complexes,* VCH Publishers, Inc., Deerfield Beach, FL, (1987) 365. (b) See also tables in Ref. [3a] (c) W. G. Bentrude, H.-W. Tan, K. C. Yee, *J. Am. Chem. Soc., 97,* 1975, 573.
- [15] Three-bond couplings $^{3}\!J_{\rm (PH)}$ for the equatorial protons at C_4 or C_6 in chair-shared 1,3,2-dioxaphosphorinanes are in the range of 20–25 Hz; for axial protons, they are in the range of 1.5–4.5 Hz; see Ref. [13a] and L. D. Hall, R. B. Malcom, *Can J. Chem., 50,* 1972, 2092.
- [16] In twist conformations, similar values of $\frac{3J_{HP}}{2}$ coupling constants are expected for H_a and H_e (at C_4 or C_6) with phosphorus: (a) W. G. Bentrude, H. Hargis, *J. Am. Chem. Soc., 92,* 1970, 7136; (b) W. G. Bentrude, H.-W. Tan, *J. Am. Chem. Soc., 95,* 1973, 4666.
- [17] A twist conformation is more polar than an equatorial one and therefore more stabilized in polar solvents. Cf. E. L. Eliel, S. Chandrasekaran, L. E. Carpenter II, J. G. Verkade, *J. Am. Chem. Soc., 108,* 1986, 6651. Also, because of its more "axial-like" OAr group, its response to solvent change should be more similar to that of the axial isomers than would be expected of a conformer with purely equatorial OAr.
- [18] For a review of the CPMAS solid NMR technique uses and applications, see (a) C. S. Yannoni, *Acc. Chem. Res., 15,* 1982, 201. (b) G. E. Maciel, *Science 226,* 1984, 282. See also P. E. Pfeffer, *J. Carbohydrate Chem., 3,* 1984, 613; P. C. Healy, J. V. Hanna, J. D. Kildea, B. W. Skelton, A. H. White, *Aust. J. Chem., 44,* 1991, 427; W. P. Rothwell, J. S. Waugh, J. P. Yesinowski, *J. Am. Chem. Soc., 102,* 1980, 2637; N. Vijayashree, A. G. Samuelson, M. Nethaji, *Curr. Sci., 65,* 1993, 57; J. S. Waugh, *Anal. Chem., 65,* 1993, 725A;

G. Szalontai, J. Bakos, S. Aime, R. Gobetto, *Solid State Nucl. Mag. Res., 2,* 1993, 245; R. Challoner, C. A. McDowell, M. Yoshifuji, K. Toyota, J. A. Tossell, *J. Mag. Res., Series A, 104,* 1993, 258; M. Sone, H. Yoshimizu, H. Kurosu, I. Ando, *J. Mol. Struct., 301,* 1993, 227.

- [19] A solid-state 31P NMR spectrum of a sample spinning at the magic angle at rotation speeds that are below the powder line width was flanked by spinning side bands. See, for example, (a) T. Chivers, M. Edwards, C. A. Fyfe, L. H. Randall, *Mag. Res. Chem., 30,* 1992, 1220; (b) J. D. Wang, A. Clearfield, *Mat. Chem. Phys., 35,* 1993, 208; (c) R. Contant, C. Rocchiccioli-Deltcheff, M. Fournier, R. Thouvenot, *Colloids. Surf. A: Physicochem. Eng. Asp., 72,* 1993, 301.
- [20] The spectrum was complicated by the presence of extra signals (repetitive pattern) in the aromatic region due to the large chemical shift anisotropy typical for phenyl rings. See Ref. [21].
- [21] (a) Colin A. Fyfe: *Solid State NMR for Chemist,*C. F. C. Press, Guelph, Ont., Canada (1983): (b) P. Knopik, L. Luczak, M. J. Potrzebowski, J. Michalski, J. Blaszczyk, M. W. Wieczorek, *J. Chem. Soc. Dalton Trans.,* p. 2749 (1993); (c) M. J. Potrzebowski, *J. Chem. Soc. Perkin Trans., 2,* 1993, 63.
- [22] Using the NRCVAX system: E. J. Gabe, Y. LePage, J. P. Charland, F. L. Lee, P. S. White, *J. Appl. Cryst., 22,* 1989, 384.
- [23] Concerning the ORTEP structures shown, cf. C. K. Johnson: *ORTEP—A Fortran Thermal Ellipsoid Plot,* Technical Report ORNL-5138, Oak Ridge Laboratories, Oak Ridge, TN (1976).
- [24] It should be noted that the numbering system in the structures simultaneously submitted to the Cambridge Crystallographic Data Base is different from that used here.
- [25] (a) D. W. J. Cruickshank, *J. Chem. Soc.,* 1961, 5486; (b) H. J. Geise, *Rec. Trav. Chim. Pays-Bas, 86,* 1967, 362.
- [26] For a similar analysis in analogs, see R. W. Warrent, C. N. Caughlan, J. H. Hargis, K. C. Yee, W. G. Bentrude, *J. Org. Chem., 43,* 1978, 4266.
- [27] In analogs of cyclophosphamide [28], a twist conformation is observed when the mustard substituent, $N(CH_2CH_2Cl)_2$, on phosphorus is axial: B. Lilo, M. Moreau, D. Bouchu, *Tetrahedron Lett., 31,* 1990, 887; see also L. E. Carpenter II, D. Powell, R. A. Jacobson, J. G. Verkade, *Phosphorus and Sulfur, 12,* 1982, 287.
- [28] The conformations of oxazaphosphorinanes can be attributed to the operation of exo and endo anomeric effects: W. G. Bentrude, W. N. Setzer, M. G. Newton, E. J. Meehan, Jr., E. Ramli, M. Khan, S. Ealick, *Phosphorus, Sulfur and Silicon, 57,* 1991, 25; W. G. Bentrude, W. N. Setzer, A. A. Kergaye, V. Ethridge, M. R. Saadein, Atta M. Arif, *Phosphorus, Sulfur and Silicon, 57,* 1991, 37.
- [29] D. F. Ewing, *Org. Mag. Res., 12,* 1979, 499.